Fuzzy Trajectory Control Design for Underwater Robot
نویسندگان
چکیده
The URV is operated manually with a joystick or automatically with a computer. The automatic control of the underwater robot is a difficult problem due to its nonlinear dynamics. Moreover, the dynamics can change according to the alteration of configuration to be suited to the mission. In order to cope with those difficulties, the control system should be flexible. An interesting review of classical and modern techniques adapted to control the dynamic behaviour of unmanned underwater vehicles has been provided in [1]. In the paper applying of genetic algorithms to designing of a fuzzy autopilot for trackkeeping control of underwater robot is considered. For the tracking of a reference trajectory, the way-point line of sight scheme is incorporated and three independent fuzzy controllers are used to generate command signals. Parameters of membership functions of input and output are tuned using genetic algorithms. Quality of control is concerned without and in presence of external disturbances. Some computer simulations are provided to demonstrate the effectiveness and robustness of the approach. Nowadays, fuzzy systems find wide practical applications, ranging from soft regulatory control in consumer products to accurate control and modeling of complex nonlinear systems [2,6,7,8,9]. In this paper we design the fuzzy logic autopilot to trackkeeping control of the URV tuning its parameters by genetic algorithms.
منابع مشابه
Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملTrajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)
In recent years, soft computing methods, like fuzzy logic and neural networks have been presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...
متن کاملبازرسی خطوط انتقال نفت و گاز زیر دریا بوسیله ربات زیرسطحی با بردار رانش متغیر جدید
This paper presents a special underwater robot for subsea pipelines inspection which is used to transport extracted oil and gas from oil platforms to onshore facilities. Due to the high pressure in the deep sea and the long pipelines, it is impossible to inspection by divers. Therefore underwater robot can be used to solve this problem. This paper investigate a hovering type of underwater vehic...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005